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Introduction

We discuss the estimation of the joint density of a multivariate random variable in the presence of
categorical covariates.

Focusing on density regression rather than modeling summaries, such as expected value or vari-
ance, provides a more complete description of the phenomenon of interest.

Goals: - density estimation of bounded continuous multivariate responses,

- separate variable selection for each dimension of the response.

Contributions

We propose a Bayesian approach for conditional multivariate density estimation that

.employs a Gaussian copula to model dependence across dimensions,
- employs mixtures of truncated normals with common atoms to model marginal distributions,
- models covariate-dependent mixture weights through a tensor factorization,

. replaces mode matrices in the tensor factorization with partitions over the covariate levels.

Notation

Statistical unit:
multivariate response, x; = (z1;,...,%q;)" € [A, B]?
covariate combination, c¢; = (¢4, - .

Tensor factorization for the /" dimension of the response
partition for covariate h, sy, = {sélfz, o sédf’;)}T e {1.....d,}%

core tensor element in positionm, Ay = { A\ m(1),. .., Agm(K) e AL

Sécz‘) _ S(Cl,z')

mapping of covariate combination c;, ={18,,",...,5

Density estimation on aggregate level combinations

The model

- aggregates covariate levels according to the dimension-specific partitions,
- defines new covariate combinations based on the aggregate levels,

- assign a different mixture distribution to each of the new covariate combinations.

remark: variable selection is a by-product of level aggregation.

8 NHANES dietary data

Multivariate response: d = 6 regularly consumed dietary components
Covariates (n. of levels): sex (2), age (10), race (6), income (17)
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Model specification

Gaussian copula with mixtures of truncated normals with common atoms as marginals
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Covariate-dependent weights modeled through a tensor factorization
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Partitions over covariate levels
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Mode matrices vs. partitions over covariate levels
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