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Introduction

For standard Euclidean data, clustering is quite straightforward since a point may belong to only a cluster.
On the other hand, for functional data the problem becomes more complex since one may perform

- clustering at global level: a whole function is assigned to a single cluster,

- clustering at local level: the same function may belong to different clusters depending on the point of
its domain at which itis evaluated.

Goal: performing local clustering for functional data.

Figure 1: Comparison of a clustering problem for non-functional and functional data.

Contributions

We propose a Bayesian approach for the analysis of functional data that

- exploits the local property of B-spline basis expansion to perform indirect local clustering,
- defines unit-specific B-spline parameters in terms of unit- and basis-specific cluster assignments,
- employs an ad-hoc definition for contiguous cluster-specific parameters ensuring smooth functions,

-employs a novel dependent random partition model inducing sequences of random partitions ex-
hibiting semi-Markovian dependence.

Modeling expected values via B-spline basis expansion
We assume that a random curve Y;(z), evaluated at the point = € R, follows

Yi(z) | 0%, ¢, 0% N (b(2)76;,0%).
where b(x) is a d-degree B-spline with basis coefficient
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determined by K clusterassignmentsc; = (¢;1,. .., ¢ i), one for each basis.

Local property: the expected values of different functions, b(x)'8;, coincide in part of their do-
main if the functions share local clusters for enough contiguous bases.

Modeling cluster-specific parameters

We consider a partition of the curves at each basis, p;,, and define the cluster-specific parameters

is such a way that contiguous parameters in each 0; are similar:
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Semi-Markovian Random Partition Model (smRPM)

We introduce auxiliary variables explicitly modeling the evolution of the partitions at different
basis:

(
1 if curve s cannot be reallocated when moving from basisk - 1tok +d, - 1

Yik =

\O otherwise

The distribution of the partition at basis k is influenced by the auxiliary variables related to bases

k,...,k—d,+1,collected in 'y]idp):
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where Py, is the set of partitions that are compatible with p;_; based on 'yéd”).
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The probabilities of success of the auxiliary variables at different basis can be independent,
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or have d,-order dependence,
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(Polson etal. (2013))

Notation: assuming p; ~ CRP(/), the model is denoted as smRPM; ; (ar, M).

Itfd, =1,d, =0, the model coincides with temporal Random Partition Model (Page etal., 2022).

Simulations

We define n(ref) = 5 reference functional observations with known cluster assignments, and we
simulate R = 50 datasets containing n("e?) ¢ {10, 30} realizations of each of these reference
functional observations.

We simulate the observations and the cluster-specific parameters as

Yi(z) | 0%, i, o” "N (b(z)76,, 02) ,
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where g% € {1,4} quantifies the noise added to the reference functional observations.

Evaluation: Adjusted Rand Index (Hubert and Arabie, 1985) computed on each MCMC iteration.
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Figure 2: Boxplot of the average posterior ARl across the sequence of partitions computed on R = 50 simulated datasets.
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