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Introduction

For standard Euclidean data, clustering is quite straightforward since a point may belong to only a cluster.
On the other hand, for functional data the problem becomes more complex since one may perform

• clustering at global level: a whole function is assigned to a single cluster,

• clustering at local level: the same function may belong to different clusters depending on the point of
its domain at which it is evaluated.

Goal: performing local clustering for functional data.

Figure 1: Comparison of a clustering problem for non-functional and functional data.

Contributions

We propose a Bayesian approach for the analysis of functional data that

• exploits the local property of B-spline basis expansion to perform indirect local clustering,

• defines unit-specific B-spline parameters in terms of unit- and basis-specific cluster assignments,

• employs an ad-hoc definition for contiguous cluster-specific parameters ensuring smooth functions,

• employs a novel dependent random partition model inducing sequences of random partitions ex-
hibiting semi-Markovian dependence.

Modeling expected values via B-spline basis expansion

We assume that a random curve Yi(x), evaluated at the point x ∈ R, follows

Yi(x) ∣ θ∗,ci, σ2 ind∼ N (b(x)⊺θi, σ
2) ,

where b(x) is a d-degree B-spline with basis coefficient

θi = (θ∗1,ci,1, . . . , θ
∗
K,ci,K
),

determined byK cluster assignments ci = (ci,1, . . . , ci,K) , one for each basis.

Local property: the expected values of different functions, b(x)⊺θi, coincide in part of their do-
main if the functions share local clusters for enough contiguous bases.

Modeling cluster-specific parameters

We consider a partition of the curves at each basis,ρk, and define the cluster-specific parameters
is such a way that contiguous parameters in eachθi are similar:

θ∗kj ∣ θ∗k−1, ρk, ρk−1, ϕ, τ 2
ind∼ N

⎛
⎜
⎝

ϕ

∣C(→j)k−1 ∣
∑

l∈C(→j)k−1

θ∗k−1,l, τ
2
⎞
⎟
⎠
.

Semi-Markovian Random Partition Model (smRPM)

We introduce auxiliary variables explicitly modeling the evolution of the partitions at different
basis:

γik =
⎧⎪⎪⎨⎪⎪⎩

1 if curve i cannot be reallocated when moving from basis k − 1 to k + dρ − 1
0 otherwise

.

The distribution of the partition at basisk is influenced by the auxiliary variables related to bases
k, . . . , k − dρ + 1, collected inγ

(dρ)
k :

Pr(ρk = λ ∣ γ
(dρ)
k , ρk−1) =

Pr(ρk = λ)I (λ ∈ PRk
)

∑λ′∈P Pr(ρk = λ′)I (λ′ ∈ PRk
)
,

wherePRk
is the set of partitions that are compatible with ρk−1 based onγ

(dρ)
k .
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The probabilities of success of the auxiliary variables at different basis can be independent,

γik ∣ αk
ind∼ Ber(αk),

αk
iid∼ Beta(aα, bα),

or have dγ-order dependence,

γik ∣ α,γ
(dγ)
i,k−1

ind∼ Ber
⎛
⎝
π(α0 + α1

dγ

∑
q=1

γi,k−q)
⎞
⎠
,

α ∼ N2(a,A), ωik
iid∼ PG(0, 1). (Polson et al. (2013))

Notation: assuming ρ1 ∼ CRP(M), the model is denoted as smRPMdρ,dγ(α,M).

Ifdρ = 1,dγ = 0, the model coincides with temporal Random Partition Model (Page et al., 2022).

Simulations

We definen(ref) = 5 reference functional observations with known cluster assignments, and we
simulate R = 50 datasets containing n(rep) ∈ {10, 30} realizations of each of these reference
functional observations.

We simulate the observations and the cluster-specific parameters as

Yi(x) ∣ θ∗,ci, σ2 ind∼ N (b(x)⊺θi, σ
2) ,

θ∗1j
ind∼ (10j, 5), θ∗kj ∣ θ∗k−1,ρk, ρk−1

ind∼
⎛
⎜
⎝

1

∣C(→j)k−1 ∣
∑

l∈C(→j)k−1

θ∗k−1,l, 5
⎞
⎟
⎠
,

whereσ2 ∈ {1, 4} quantifies the noise added to the reference functional observations.

Evaluation: Adjusted Rand Index (Hubert and Arabie, 1985) computed on each MCMC iteration.
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Figure 2: Boxplot of the average posterior ARI across the sequence of partitions computed onR = 50 simulated datasets.
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