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TOPIC MODELING
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HETEROGENEOUS DOCUMENTS

We are interested in dealing with two types of heterogeneity:

∙ heterogeneity of document length,

∙ heterogeneity of document descriptors.

In this stage of the work we focused on microblogs – Twitter – since:

∙ posts can be both long and short,

∙ posts can contain words, hashtags, emoji, mentions, . . .
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TWITTER-LDA E HASHTAG-LDA
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TWITTER-LDA
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HASHTAG-LDA
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A TOPIC MODEL FOR HETEROGENEOUS DOCUMENTS
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PROPOSED MODEL
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BLOCK DIVISION OF THE GENERATIVE PROCESS
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BLOCK 1

9



BLOCK 2 AND BLOCK 3
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BLOCK 4

Figure: Generation of a word udn.
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EXPERIMENTAL EVALUATION AND POSTERIOR INFERENCE

A first evaluation was carried out on a collection of tweets:

∙ 8895 tweets in Italian about COVID-19,

∙ 101 distinct users.

A Collapsed Gibbs Sampler is used to perform the approximate
posterior inference:

∙ 1000 iterations with a burn-in period of 700 iterations

∙ Monte Carlo on one iteration every ten
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QUANTITATIVE ANALYSIS

Topic Coherence metrics

∙ a topic is perceived as useful and coherent if its top words tend to
occur together

Distance from the corpus distribution

∙ a topic is perceived as useless or overly general if it is similar to
the corpus distribution
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COMPARISON OF TOPIC MODELS

TC-PMI TC-LCP JS div.
LDA 1.3023 -3.1437 0.2020
TLDA 1.2026 -2.9671 0.2703
HLDA 0.9863 -2.9563 0.2159
MLDA 1.2909 -2.9866 0.2745
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DOUBLE REPRESENTATION OF A TOPIC

Figure: List of the 15 top words and 15 top hashtags of topic 25.

15



FUTURE WORK

The subsequent steps will be:

∙ investigate in detail the effect of the number of topics on the
proposed approach

∙ investigate how to tailor the model to heterogeneous text
collections

∙ extend the set of adopted baselines

∙ evaluate the effectiveness in diverse tasks such as (hash)tag
recommendation, text classification, and clustering

∙ perform a qualitative analysis through a case study
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PROBABILISTIC GRAPHICAL MODEL
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