A MODULAR APPROACH TO TOPIC MODELING FOR HETEROGENEOUS DOCUMENTS

(Extended Abstract)

Giovanni Toto¹, Emanuele Di Buccio^{1,2}

¹Department of Statistical Sciences, University of Padova

²Department of Information Engineering, University of Padova

IIR 2022 - 12th Italian Information Retrieval Workshop, June 29th-30th, 2022, Milano, Italy

TOPIC MODELING

1

HETEROGENEOUS DOCUMENTS

We are interested in dealing with two types of heterogeneity:

- · heterogeneity of document length,
- · heterogeneity of document descriptors.

In this stage of the work we focused on microblogs – Twitter – since:

- · posts can be both long and short,
- · posts can contain words, hashtags, emoji, mentions, ...

TWITTER-LDA E HASHTAG-LDA

TWITTER-LDA

HASHTAG-LDA

A TOPIC MODEL FOR HETEROGENEOUS DOCUMENTS

PROPOSED MODEL

BLOCK DIVISION OF THE GENERATIVE PROCESS

BLOCK 1

BLOCK 2 AND BLOCK 3

BLOCK 4

Figure: Generation of a word udn.

EXPERIMENTAL EVALUATION AND POSTERIOR INFERENCE

A first evaluation was carried out on a collection of tweets:

- · 8895 tweets in Italian about COVID-19,
- · 101 distinct users.

A *Collapsed Gibbs Sampler* is used to perform the approximate posterior inference:

- · 1000 iterations with a burn-in period of 700 iterations
- · Monte Carlo on one iteration every ten

QUANTITATIVE ANALYSIS

Topic Coherence metrics

· a topic is perceived as useful and coherent if its top words tend to occur together

Distance from the corpus distribution

 \cdot a topic is perceived as useless or overly general if it is similar to the corpus distribution

COMPARISON OF TOPIC MODELS

	TC-PMI	TC-LCP	JS div.
LDA	1.3023	-3.1437	0.2020
TLDA	1.2026	-2.9671	0.2703
HLDA	0.9863	-2.9563	0.2159
MLDA	1.2909	-2.9866	0.2745

DOUBLE REPRESENTATION OF A TOPIC

Figure: List of the 15 top words and 15 top hashtags of topic 25.

FUTURE WORK

The subsequent steps will be:

- · investigate in detail the effect of the number of topics on the proposed approach
- · investigate how to tailor the model to heterogeneous text collections
- · extend the set of adopted baselines
- · evaluate the effectiveness in diverse tasks such as (hash)tag recommendation, text classification, and clustering
- · perform a qualitative analysis through a case study

REFERENCES

- · Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022.
- · Lin, T., Tian, W., Mei, Q. & Cheng, H. (2014). The Dual-Sparse Topic Model: Mining Focused Topics and Focused Terms in Short Text. *Proceedings of the 23rd International Conference on World Wide Web*, 539–550.
- · Zhao, F., Zhu, Y., Jin, H. & Yang, L. T. (2016). A Personalized Hashtag Recommendation Approach Using LDA-Based Topic Model in Microblog Environment. *Future Gener. Comput. Syst.*, 65 (100), 196–206.
- · Zhao, W. X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H. & Li, X. (2011). Comparing Twitter and Traditional Media Using Topic Models. In P. Clough, C. Foley, C. Gurrin, G. J. F. Jones, W. Kraaij, H. Lee & V. Mudoch (Cur.), Advances in Information Retrieval (pp. 338–349). Springer Berlin Heidelberg.

PROBABILISTIC GRAPHICAL MODEL

